

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Software Supply
Chain Security

ReversingLabs Special Edition

by Paul F. Roberts and
Charlie Jones

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Software Supply Chain Security For Dummies®, ReversingLabs
Special Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2024 by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights, including for text
and data mining, AI training, and similar technologies, are reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be
used without written permission. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION
OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For
Dummies book for your business or organization, please contact our Business Development
Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit be www.dummies.
com/custom-solutions. For information about licensing the For Dummies brand for products or
services, contact BrandedRights&Licenses@Wiley.com.

ISBN 978-1-119-81295-1 (pbk); ISBN 978-1-119-81297-5 (ebk); ISBN 978-1-394-28363-7 (ebk)

Publisher’s Acknowledgments

Development Editor:
Rebecca Senninger

Project Editor: Dan Mersey

Acquisitions Editor: Traci Martin

Senior Managing Editor:
Rev Mengle

Client Account Manager:
Jeremith Coward

Production Editor:
Saikarthick Kumarasamy

Cover Photo:
© Shutter2U / Adobe Stock

Special Help: Ashlee Benge

http://www.wiley.com
http://www.wiley.com/go/permissions
http://Dummies.com
mailto:info@dummies.biz
http://www.dummies.com/custom-solutions
http://www.dummies.com/custom-solutions
mailto:BrandedRights&Licenses@Wiley.com

Table of Contents iii

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION ... 1

About This Book ... 1
Icons in This Book... 2
Beyond the Book .. 2

CHAPTER 1: Exploring the Landscape of Software
Supply Chain Risks and Threats 3
Understanding Why Software Supply Chain Attacks
Are a Growing Threat ... 4

Open source code ... 4
Software build systems .. 5

Increasing Software Supply Chain Risks from DevOps 6
Filling in Blind Spots with Comprehensive Security 7

CHAPTER 2: Software Supply Chain Security for Modern
Development Programs ... 9
Securing Source Code .. 9
Securing Third-Party and Open Source Components 10
Securing Your Continuous Integration/Continuous
Delivery System .. 11
Securing the Development, Build, and Release Processes 13

Development ... 13
Build .. 14
Release ... 15

Standardizing with Software Supply Chain Security
Frameworks .. 16

Supply Chain Levels for Software Artifacts (SLSA) 17
In-toto ... 18

Developing Reproducible Processes .. 19

CHAPTER 3: Managing Third-Party Commercial
Software Risk .. 21
Sharing the Load: Managing Software Supply Chain Risks 22
Aligning Software Supply Chain Security Policies to
Internal Standards .. 23

Understanding what software to test first 24
Shifting away from a “one size fits all” mentality 25

iv Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Evaluating the Security of Third-Party Software 25
Achieving Software Assurance Throughout the Lifecycle 26

Stage 1: Acquisition... 26
Stage 2: Deployment .. 27
Stage 3: Maintenance ... 28
Stage 4: Monitoring .. 29

Going Beyond AppSec Controls to Evaluate Third-Party Risk 29
Compensating controls and technology shortfalls 30
Complex binary analysis: A final exam for software 30

CHAPTER 4: Hunting for Threats in Your Software
Supply Chain .. 33
Using Threat Intelligence ... 34

What is threat intelligence? ... 34
Gathering intelligence .. 34

Proactively Hunting Threats .. 36
Looking for evidence of malicious activity 37
Using SBOMs to understand software composition 38
Identifying evidence of compromise .. 38

Hunting for Developer Threats ... 39

CHAPTER 5: Ten Tips for a Successful Software
Supply Chain Security Program 41
Broaden Your AppSec Program .. 41
Secure and Protect Development Infrastructure 42
Beware of File Rot .. 42
Give Your Software Package a Final Exam 42
Enhance Your Risk Analysis ... 43
Use Threat Intelligence .. 43
Emphasize Secure Development Practices 43
Pay Attention to Open Source Risks .. 44
Invest in Proactive Threat Hunting ... 44
Monitor and Track Development Secrets .. 44

Introduction 1

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

All organizations are becoming increasingly reliant on
software and cloud-based services. As such, the focus of
cybercriminal and nation-backed hackers has shifted from

attacking individuals to attacking the software and services that
power modern organizations. After all, why expend the time,
effort, and resources targeting one organization for a marginal
profit when an attacker can expend the same effort to extort
hundreds or thousands of users of a piece of software for a much
larger sum?

These basic economics are driving an explosion in attacks on
software supply chains: the extensive web of proprietary, open
source, and commercial software that every modern organization
depends on. In just one measure of that, since 2020, the number
of malicious packages discovered on common open source
repositories has jumped 1,300 percent. During that time, high-
profile compromises of both commercial and open source soft-
ware applications have made headlines.

With the increase of threats, it’s even more important that your
organization boasts a robust software supply chain security eco-
system, one that’s both understandable and achievable to main-
tain for you and your organization.

About This Book
As with any issue related to cyber security, there is no “silver bul-
let” or magic fix when it comes to securing your software supply
chain. Instead, your organization needs to accurately assess its
risks and then plan and invest for the long term to safely manage
those risks.

In this book, we discuss the many elements of a modern and
effective software supply chain program and talk about steps your
organization can take to both secure development environments,
search for evidence of malicious activity within your development
pipeline, and defend your larger software supply chain.

Software supply chain risk is a large and growing problem that
impacts organizations at many different levels. That’s why all

2 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

professionals can benefit from this book, including CISOs or other
senior security leads; software development, quality assurance,
or testing professionals working on new or legacy development
projects; and security professionals working on internal network
or application security teams.

Icons in This Book
We use a few icons you’ll find in the margins of the book to point
out useful information:

Remember icons contain nuggets of information that are worth
memorizing.

If you’re the kind of person who likes to have the background info
or extras, read the paragraphs marked with the Technical Stuff
icon. But you can safely skip them if you want to.

A Tip icon gives you some extra help or provides some additional
insight.

Pay extra attention to paragraphs with a Warning icon. They give
information that, if left unheeded, can cause your organization
harm.

Beyond the Book
Software represents the largest under-addressed attack surface
in the world, and classic application security tools cannot address
the full scope of threats impacting the software supply chain.

This book provides ideas and guidance on the kinds of
investments required to secure your organization’s software from
malicious compromise and put you on a solid footing with both
your suppliers and your customers.

If you or your organization want to have more trust in its soft-
ware, be sure to visit reversinglabs.com to learn more about the
Spectra Assure software supply chain security solution.

https://www.reversinglabs.com/

CHAPTER 1 Exploring the Landscape of Software Supply Chain Risks and Threats 3

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

 » Understanding the growing risks to
software supply chains

 » Explaining how software supply chain
attacks work

 » Examining how application security tools
fail to detect supply chain threats

Exploring the Landscape
of Software Supply Chain
Risks and Threats

Over the past two decades, malicious campaigns evolved
from the loud but indiscriminate attacks of the early
2000s (such as the ILOVEYOU virus) to targeted attacks on

public-facing, Internet-connected private and public sector orga-
nizations (such as the infamous hack of the retailer Target in
2013). But as digital transformation has taken root across global
economies, and enterprise cyber protections have slowly
improved, the focus of both cybercriminal and nation-backed
hackers has shifted to software supply chains: the software and
services that power modern organizations.

In this chapter, we take a look at why bad actors are attacking the
supply chains, identify the vulnerabilities in the supply chain, and
discuss why it’s important that your organization address these
issues.

4 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Understanding Why Software Supply
Chain Attacks Are a Growing Threat

These days, sophisticated cyber actors are targeting software
integrated development environments (IDEs) used to write soft-
ware, as well as continuous integration/continuous delivery (CI/
CD) software that development teams and build systems use to
create software artifacts.

These are the plumbing of software development organizations
and they have been largely beyond the purview of security teams
and security vendors. But as attackers have been shifting their
focus to the software supply chain, that can no longer be the case.
Leaving IDEs and CI/CD software vulnerable gives attackers a way
into your organization and its data. By one estimate, software
supply chain attacks have increased by an average of over 700
percent annually since 2019.

Open source code
Open source software packages are frequent targets of malicious
actors — and for good reason. An estimate by the Linux Foundation
shows the percentage of open source code in modern applications
is in the neighborhood of 70 to 90 percent (linuxfoundation.org/
blog/blog/a-summary-of-census-ii-open-source-software-
application-libraries-the-world-depends-on). That’s a lot of
open source code making its way into your organization, and, if
a malicious actor has added their own code to it, can infect your
software if left unchecked.

Here are some ways that bad actors can leverage what is other-
wise useful open source code:

 » Find security holes. For example, Log4Shell, an exploitable
security hole in an Apache open source software library,
Log4j, impacted tens of thousands of organizations globally
and underscored the extent of organizations’ exposure to
vulnerabilities in common, open source packages.

 » Add harmful code to projects and repositories. Anyone
can contribute to open source, regardless of their intentions.
That means bad actors can and will infiltrate legitimate open
source projects or package repositories to push malicious
code to developers and development organizations.

https://www.linuxfoundation.org/blog/blog/a-summary-of-census-ii-open-source-software-application-libraries-the-world-depends-on
https://www.linuxfoundation.org/blog/blog/a-summary-of-census-ii-open-source-software-application-libraries-the-world-depends-on
https://www.linuxfoundation.org/blog/blog/a-summary-of-census-ii-open-source-software-application-libraries-the-world-depends-on

CHAPTER 1 Exploring the Landscape of Software Supply Chain Risks and Threats 5

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Exploit human error. Threat actors also carry out low-skill
typosquatting campaigns, the posting of “lookalike” malicious
packages to an open source repository that mimic com-
monly used, benign open source packages.

Software build systems
Within the spectrum of software supply chain targets, the build
system represents the Holy Grail for malicious actors. If a build
system is compromised, an attacker has control over the final
software that is signed and delivered to customers. Absent post-
build security assessments, malicious behavior may be included
in the final software package. If undetected, the final software
package may be signed by the legitimate developer. This creates
a false sense of security in users of the compromised software
package. If the software in question is subsequently deployed via
automatic updates to their users, it provides the attacker with a
potentially huge number of victims.

An example of this kind of attack is the compromise of desktop
client software developed by 3CX, a voice over IP provider, in 2023.
Researchers at ReversingLabs analyzed the malicious 3CXDeskto-
pApp and found evidence of a software build pipeline compro-
mise that resulted in the addition of RC4 encrypted shellcode to
the signature appendix of d3dcompiler.dll, a standard library

THE FINANCIAL REPERCUSSIONS
The financial repercussions associated with a software supply chain
compromise can be enormous. SolarWinds reports that in a single
quarter following its software supply chain breach, it spent at least
$18 million on remediation and expected costs to be significant in
future quarters (reuters.com/technology/solarwinds-says-
dealing-with-hack-fallout-cost-least-18-million-2021-
04-13). But it is not just the breached company that is impacted by a
software supply chain compromise. A survey of SolarWinds custom-
ers revealed that on average their remediation costs were about
$12 million (techrepublic.com/article/cybersecurity-study-
solarwinds-attack-cost-affected-companies-an-average-
of-12-million).

https://www.reuters.com/technology/solarwinds-says-dealing-with-hack-fallout-cost-least-18-million-2021-04-13/
https://www.reuters.com/technology/solarwinds-says-dealing-with-hack-fallout-cost-least-18-million-2021-04-13/
https://www.reuters.com/technology/solarwinds-says-dealing-with-hack-fallout-cost-least-18-million-2021-04-13/
https://www.techrepublic.com/article/cybersecurity-study-solarwinds-attack-cost-affected-companies-an-average-of-12-million/
https://www.techrepublic.com/article/cybersecurity-study-solarwinds-attack-cost-affected-companies-an-average-of-12-million/
https://www.techrepublic.com/article/cybersecurity-study-solarwinds-attack-cost-affected-companies-an-average-of-12-million/

6 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

used with OpenJS Electron applications, an open source platform
on which 3CXDesktopApp was built. Another standard Electron
application module, ffmpeg was modified with code to extract and
run the malicious content from the d3dcompiler file. A subse-
quent review by the maintainers of the open source libraries in
question determined no malicious changes had been made, point-
ing to compromise of 3CX’s build system in which the malicious
functionality was added during the build and deployment process.

Increasing Software Supply Chain
Risks from DevOps

The complexity of modern development pipelines also threatens
the security of software supply chains, as shown in Figure 1-1.
Many modern development teams rely on third-party and open
source libraries, both of which carry risks and licensing require-
ments. We talk more about the development pipeline and how you
can secure it in Chapter 2.

The risks from open source and third-party, commercial code
include vulnerabilities that they carry as well as other risks, such
as the use of code linked to sanctioned countries or firms, which
may have political or financial repercussions for the software
producer.

FIGURE 1-1: The complexity of modern software applications and the
development pipelines adds risk to the security of deployed software.
Courtesy of ReversingLabs.

CHAPTER 1 Exploring the Landscape of Software Supply Chain Risks and Threats 7

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Historically, the goals of security teams and development teams
have been at odds, for obvious reasons:

 » Adding security slows the development process. The
development team, focused on releasing features and
updates as quickly as possible, have adopted processes, such
as CI/CD, to prioritize efficiency. Their concern isn’t security.

 » Properly vetting software before release takes time.
Deploying software without proper vetting puts your
organization at risk. Third-party software and platforms are
necessary, but reduce your organization’s ability to remedi-
ate risks. Breaches of a third-party software can lead to a
compromise of your own organization.

 » The increasing number of secrets, use of containers,
and other ephemeral systems, add to the challenges.
The accidental inclusion of API keys or code signing certificates
in public code repositories or final build packages is another
common problem. Exposure of these secrets allows anyone who
finds them to access sensitive information via an API or to use an
organization’s signing certificate to sign a file of dubious origin.

Filling in Blind Spots with Comprehensive
Security

Software supply chain attacks pose a big risk because current
security product offerings are ill prepared to protect the software
supply chain or establish a chain of trust connecting software
producers with their suppliers and end-user organizations.

Existing application security tooling attempts to address this gap,
but offerings such as static and dynamic application security test-
ing (SAST and DAST) only work at one phase of the development
pipeline, rather than offering a comprehensive solution.

Comprehensive software supply chain security requires invest-
ments at each stage of your development process: from the initial
design of applications, to securing development infrastructure,
to analysis of first-, second-, and third-party code and vetting
completed software artifacts before they are shipped to end-user
organizations.

8 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Comprehensive software supply chain security is a significant
time and resource commitment for development teams. However,
it is an investment that will pay dividends for your organization.

As noted by the National Institute of Standards and Technology
(NIST) in its Special Publication 800-161 (csrc.nist.gov/pubs/
sp/800/161/r1/final), establishing and sustaining a cyberse-
curity software supply chain risk management capability comes
with benefits. They include:

 » Enhancing your ability to detect, respond, and recover from
supply chain compromises or other events that might result
in significant business disruptions.

 » Improving the operational and enterprise efficiencies of your
organization.

 » Weeding out low-quality suppliers and software, while
promoting trustworthy suppliers and applications that are
more likely to stave off attacks and provide high levels of
availability.

https://csrc.nist.gov/pubs/sp/800/161/r1/final
https://csrc.nist.gov/pubs/sp/800/161/r1/final

CHAPTER 2 Software Supply Chain Security for Modern Development Programs 9

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

 » Making your development pipeline
secure

 » Assessing your cyber risk at different
stages of the software development
lifecycle

 » Limiting cyber risk with frameworks and
reproducible software builds

Software Supply Chain
Security for Modern
Development Programs

Securing software development pipelines from malicious
actors is a task that has historically been a low priority. But
changes on multiple fronts give the task of shoring up soft-

ware supply chain security new urgency.

In this chapter, we outline the steps your organization needs to take
to secure your software development pipelines from end to end,
encompassing both the work of your development organization and
the end users who consume and deploy that software.

Securing Source Code
The first and most important element of your software supply
chain security program is the source code itself.

Attackers usually take advantage of weaknesses or vulnerabilities
in the underlying source code that powers applications and
 services. Any deficiencies in the security of that code can give
malicious actors the ability to leverage it in sophisticated attacks.

10 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Common attacks that can lead to unauthorized or damaging mod-
ifications of source code include:

 » The compromise of an active developer account by a
malicious actor.

 » The compromise of an inactive (or terminated) developer
account by a malicious actor.

 » Use of exposed secrets to compromise of services or data
accessed by the application.

 » Unauthorized changes made by an internal malicious actor
(for example, a developer or engineer).

 » The compromise of insecure development systems by an
internal or external malicious actor.

A variety of measures can ensure that source code you are actively
developing maintains its integrity:

 » Have clearly defined feature descriptions and requirements.

 » Use a defined and orderly process for code review and check-in.

 » Harden development environments.

 » Conduct both manual and automated reviews of code to
identify unexplained features, behaviors, or code changes.

 » Deploy static and dynamic application security testing (SAST
and DAST) to identify code vulnerabilities and other risks.

Securing source code includes identifying and addressing soft-
ware vulnerabilities. However, vulnerabilities are not the sum
of software cyber risk. You also need to pay attention to cyber
risks that do not involve exploitable vulnerabilities. Those include
compromised or malicious software dependencies, code tamper-
ing, and compromises of your development infrastructure.

Securing Third-Party and Open
Source Components

Your organization most likely relies heavily on commercial,
third-party software components as well as open source soft-
ware. These third-party and open source components provide

CHAPTER 2 Software Supply Chain Security for Modern Development Programs 11

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

ready-made features and functionality, and greatly accelerate the
development of new applications.

However, these third-party components and the many software
dependencies that come with them introduce cyber risks that can
be difficult to grasp, and open potential avenues of compromise.
This isn’t a new problem. As far back as 2003, for example, an
unknown hacker added a backdoor to the Linux kernel.

More recently, malicious packages planted on open source reposi-
tories have become a common avenue of attack. For example, the
North Korean state-sponsored hacking group known as Laz-
arus introduced Trojan horse malicious code into open source
software, including apps such as PuTTY, KiTTY, TightVNC, and
Sumatra PDF Reader for use in targeted attacks aimed at cyber
espionage in 2022, according to Microsoft.

Securing third-party and open source components in your soft-
ware supply chain requires you to employ a variety of measures
to both prevent and detect suspicious or malicious code lurking in
third party components. These include:

 » Deploying software composition analysis (SCA) technology to
scan your open source packages and updates for known
vulnerabilities.

 » Educating developers about common attack techniques such
as typosquatting, repo-jacking, and dependency confusion
attacks.

 » Requiring detailed, machine-readable software bills of
materials (SBOM) from suppliers of proprietary (closed
source) software components.

 » Scanning compiled binaries to detect suspicious, unauthor-
ized, or unexplained behaviors and modifications.

Securing Your Continuous Integration/
Continuous Delivery System

The central role that continuous integration/continuous delivery
(CI/CD) platforms play in DevOps environments, and the rapid
pace of software delivery they enable, make CI/CD platforms a
target for malicious actors.

12 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Risk factors to CI/CD environments include both the disclosure of
developer secrets, as seen in the CircleCI attack, as well as mali-
cious tampering with CI/CD processes in ways that introduce
malicious updates to developed code.

Securing your CI/CD process demands many of the same controls
present throughout your development pipeline. That includes
strict access control on CI/CD systems and the use of multifactor
authentication, as well as close monitoring of your system logs
and other data to detect suspicious or malicious activity.

Fortunately, NIST (National Institute of Standards and Technol-
ogy) provides recommendations for securing your CI/CD pipeline.
For CI pipelines, the NIST guidelines include:

 » Securing software builds.

 » Securing pull/push operations on repositories.

 » Ensuring the integrity of evidence generation during
software updates.

 » Securing code commits.

For CD pipelines, the NIST guidelines advise you to implement
controls including:

 » Verifying that artifacts originate from a secure build process.

 » Scanning software images for vulnerabilities prior to
deployment.

 » Removing secrets in code ready for deployment.

Finally, as threat actors increasingly target code-signing cer-
tificates to mask their malicious wares, your development team
needs to strengthen its code signing processes. That includes
the introduction of secure hardware for generating and storing
private keys to prevent key compromises and centralizing code
signing, rather than allowing distributed code signing across
development groups.

CHAPTER 2 Software Supply Chain Security for Modern Development Programs 13

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Securing the Development, Build,
and Release Processes

Traditional application security products broadly scan for vul-
nerabilities during the development, build, and release phases
of software creation. Static application security testing (SAST)
technology analyzes an application’s source code, bytecode, or
binary code for security vulnerabilities such as buffer overflows,
SQL injection flaws, and other common vulnerabilities. Dynamic
application security testing (DAST) involves runtime testing of
applications to spot vulnerabilities such as cross-site scripting
(XSS), SQL injection, and more. Software composition analy-
sis (SCA) creates and maintains an inventory of open source and
third-party components in a given codebase. It then scans those
software modules looking for software vulnerabilities and license
compliance issues.

These traditional technologies are critical and necessary to secure
code. However, they’re insufficient to address all the possible
software supply chain risks that you face, as successful attacks
like those on SolarWinds and 3CX show. If you want to fully secure
software supply chains, you must have both broad and deep
detection of the threats that encompass development, build, and
deployment processes.

Here, we talk about how you can secure each of these phases.
In the next section, “Standardizing with Software Supply Chain
Security Frameworks,” we talk about the frameworks that can
help your organization with its development, build, and release
processes.

Development
Securing source code within your development pipeline is a
multi-faceted endeavor that must consider both the design of the
software and secure coding practices (which are mostly beyond
the scope of this book) and then protections against some of the
common attacks on source code. Here’s how you can secure code
during the development phase:

 » Staffing: The development of secure code and software
applications begins with hiring qualified software developers

14 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

for your team who are trained in secure software design and
development. Once hired, these developers should receive
regular secure development training as an ongoing part of
their experience.

 » Design for security: Securing your code extends to the
implementation of “secure by design” principles at the very
earliest stages of product conception, as well. That includes
the use of memory-safe languages and thread-safe opera-
tions, the embrace of open design and attention to least
privilege and the clear separation of roles for users. You
should also employ threat modeling and attack surface
analysis at the earliest stages of design and planning.

 » Secure developer systems: Beyond these measures, your
organization needs to apply a range of measures throughout
the code development process that act as a check on
malicious actors who seek to tamper with or alter source
code. That starts with securing developer systems and
development build configurations (more on that later).

Restricting the use of generalized productivity applications such
as email, messaging, games, or other entertainment applica-
tions on your development systems is a way to reduce the risk of
 exposing these sensitive systems to attack. Keeping your devel-
opment systems isolated as much as possible and devoid of non-
development related applications is key to ensuring that such
systems are not used to compromise development environments.

Build
Production build systems are where software deliverables are built
from discrete software modules and components. Build environ-
ments typically encompass any system involved in the develop-
ment and build process. That includes source code repositories,
engineering workstations, build systems, as well as signing and
deployment servers. These may run locally on physical servers
managed by the development organization or (more commonly)
on cloud-based platforms.

Build systems are the crown jewels of software producers and a
frequent target of software supply chain hackers.

In compromising build environments, malicious actors typically
infiltrate developer networks first, possibly via a targeted attack

CHAPTER 2 Software Supply Chain Security for Modern Development Programs 15

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

on an individual developer or privileged administrator. Network
scanning and lateral movement enable the attackers to locate
code repositories and build systems and assess them for exploit-
able security holes, such as misconfigurations or exploitable soft-
ware vulnerabilities. By exploiting those weaknesses and gaining
access to build systems and code repositories, malicious actors
have almost unchecked ability to compromise the source code of
the application or insert malicious libraries and code packages
into the built application.

In the case of SunBurst, the hack of the SolarWinds Orion appli-
cation, attackers believed to be affiliated with Russia compro-
mised SolarWinds build environment and inserted malicious code
directly into the Orion application. Their long-term access to the
build server enabled the attackers to observe SolarWinds devel-
opers, and then blend their malicious code additions with the
sanctioned Orion code. That code, which executed a backdoor that
gave malicious attackers access to SolarWinds customer environ-
ments, was built with the regular Orion software, and delivered as
a signed Orion software update, thereby avoiding detection.

To protect your organization’s build environments, ensure that
all systems making up that environment are:

 » Protected with strong, multifactor authentication and user
least privilege configuration.

 » Configured to log all user/account access to build systems.

 » Segregated from remote access or access from corporate
and business networks and systems.

 » Continually monitored for malicious activity including data
exfiltration and malicious command and control (C2)
communications.

 » Monitored and audited to identify unexplained code
additions or modifications or other unusual behavior.

 » Regularly audited to identify rogue, abandoned, or over
privileged user and service accounts.

Release
In addition to securing developer systems and build environ-
ments, you need to secure the distribution systems you use to
deliver software packages to your customers.

16 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Software packages include a compiled and signed software appli-
cation or software update, as well as package metadata such as
the software version number. While the vast majority of soft-
ware produced and distributed is free of malicious modifications
or other evidence of tampering, incidents such as the hacks of
SolarWinds and Voice over IP (VoIP) vendor 3CX show that com-
promises of development pipelines and build systems may escape
notice but leave telltale signs within the release package itself.

Even software releases that haven’t been compromised may still
contain information that exposes you to risks. For example, com-
piled software releases may contain confidential information
such as hard coded credentials, code signing certificates, or per-
sonal data.

Protections for your software release packages include:

 » Applying complex binary analysis and software composition
analysis to identify potential issues in release packages
including unexplained behaviors, exploitable vulnerabilities,
or software license issues. (See Chapter 3 for more details on
complex binary analysis.)

 » Applying continuous security monitoring to package
repositories to prevent compromises.

 » Generating and distributing a detailed, machine-readable
SBOM for all published software.

 » Cryptographically signing software packages and verifying
signatures using a package manager.

 » Applying appropriate transport layer security to software
distribution systems in accordance with NIST SP 800-52 rev. 2.

Standardizing with Software Supply
Chain Security Frameworks

The best way to begin working towards identifying anomalies in
your software supply chain is to standardize your development
processes — in particular, your build process. The following

CHAPTER 2 Software Supply Chain Security for Modern Development Programs 17

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

software supply chain security specifications can help guide that
process:

 » Supply Chain Levels for Software Artifacts (SLSA) are Linux
Foundation-backed guidelines for supply chain security.

 » In-toto is a framework for securing software supply chains
hosted at the Cloud Native Computing Foundation. The
In-toto specification provides a generalized workflow to
secure different steps in a software supply chain.

Supply Chain Levels for Software
Artifacts (SLSA)
Supply Chain Levels for Software Artifacts (SLSA) breaks down
securing the software supply chain into manageable milestones
with an end goal of standardized, tightly secured build processes.
This level of secure, verifiable build is also known as provenance.

Making your build process standardized and reproducible also
makes it auditable, which is essential if a security incident occurs.

In its simplest form, SLSA provides protections against tampering
with software during the development, build, and release phases,
akin to the kinds of quality checks that exist in other industries
(such as food production or manufacturing).

The SLSA framework encourages the use of tamper-resistant evi-
dence at each step of the software production process. This gives
software producers and consumers assurance that a finished soft-
ware product contains only the intended software “ingredients”
(first party, open source, and third party) and that those ingredi-
ents have not been altered or tampered with. The risks that SLSA
addresses specifically are:

 » Code modification: It adds a tamper-evident seal to the
code after source control.

 » Uploaded artifacts that were not built by the expected
CI/CD platform: Software artifacts are marked with a factory
stamp that shows which build platform created it.

 » Threats against the build platform: SLSA provides best
practices for build platform services.

18 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The framework has ascending levels representing the use of
approved security practices. Higher levels signify more security
guarantees against software supply chain threats. Lower SLSA
levels suggest only modest security guarantees, with SLSA 0
as the starting point (no steps taken to secure software supply
chains). Currently, SLSA recognizes Levels 1–3, though higher
levels of compliance are planned for the various security tracks.

In-toto
The SSCS platform relies on signed seals to guarantee the integ-
rity of software. But where do those seals of approval come from?
That’s where In-toto comes in. The In-toto framework focuses on
standardizing software supply chain provenance. A key element
of the framework is a metadata system that allows actions to be
verified, ensuring that the appropriate entity was responsible for
a given change, and that the code in question has not been tam-
pered with.

Specifically, In-toto provides APIs that can be used with tools like
Sigstore cosign, the SLSA GitHub Generator, and the In-toto Jen-
kins plugin to generate SLSA Provenance metadata.

Provenance does not make your organization foolproof. The In-
toto metadata framework does not alert you to insider threats to
your software supply chain. But establishing a chain of respon-
sibility for each action taken across a software supply chain can
help ensure no unwanted changes are made to a codebase.

SLSA VERSUS SBOM
SLSA is complementary with another fixture of software supply chain
security: SBOMs (Software Bills of Materials), which provide a list of
ingredients for software artifacts. SLSAs provide granular instructions
on how those ingredients can be combined and used. While SBOMs
help determine whether a particular software component (say Log4j) is
included in a particular build, they do not identify threats or risks linked
to software — such as compromised or malicious software dependen-
cies. SLSA helps close that loop: ensuring that proper handling prac-
tices are used at each step of the software production process.

CHAPTER 2 Software Supply Chain Security for Modern Development Programs 19

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Developing Reproducible Processes
A key indicator of software supply chain integrity is the ability
to use reproducible processes to create software artifacts. By fol-
lowing a consistent process for building, testing, and releasing
software, organizations can ensure their software has not been
tampered with or otherwise modified in ways that may introduce
cyber risks.

One approach to ensuring that your organization is following
reproducible processes is through a verified reproducible build.
Reproducible builds allow software producers to verify the integ-
rity of their CI/CD build systems by comparing the behaviors of
software artifacts that were constructed in totally separate build
environments. The process involves the use of two or more inde-
pendent build platforms to generate software artifacts, as shown
in Figure 2-1. Those different platforms are then used to corrobo-
rate the provenance of a build.

Verified reproducible builds address the risk of build environment
tampering by adversaries of the kind observed in the attack on
SolarWinds Orion. Development organizations maintain physi-
cally separate, isolated, and identical build environments to gen-
erate separate binaries that are then compared statically in terms
of their behaviors, rather than based on a signature hash (which
would not be identical, in any case). Differences in behaviors
between the two artifacts warrant investigation for possible tam-
pering or compromise within a build environment.

FIGURE 2-1: Use multiple independent platforms to establish a build’s
provenance. Courtesy of ReversingLabs.

CHAPTER 3 Managing Third-Party Commercial Software Risk 21

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

 » Developing a successful third-party risk
management program

 » Keeping third-party software secure
throughout its lifecycle

 » Moving beyond traditional AppSec
controls for complex binary analysis

Managing Third-Party
Commercial Software
Risk

Third-party commercial and open source code is increasingly
exploited by malicious actors (which we discuss in
Chapter 1). If your organization is like most, it is dependent

on software suppliers, which deliver products and services using
proprietary, third-party and open source code.

And unfortunately, many organizations lag in shoring up their sup-
plier base, even though the frequency and sophistication of attacks
by malicious actors grows. A survey by ReversingLabs reveals that
despite that 98 percent of surveyed organizations recognize that
software supply chain issues pose a significant business risk, only
six out of ten feel their software supply chain defenses are up to the
task of warding off such attacks (https://www.reversinglabs.
com/blog/tools-gap-leaves-the-software-supply-chain-
exposed-why-you-need-to-upgrade-your-application-
security). This gap in protection is contributing to a major unin-
sured risk for organizations. And, depending on circumstances, it

https://www.reversinglabs.com/blog/tools-gap-leaves-the-software-supply-chain-exposed-why-you-need-to-upgrade-your-application-security
https://www.reversinglabs.com/blog/tools-gap-leaves-the-software-supply-chain-exposed-why-you-need-to-upgrade-your-application-security
https://www.reversinglabs.com/blog/tools-gap-leaves-the-software-supply-chain-exposed-why-you-need-to-upgrade-your-application-security
https://www.reversinglabs.com/blog/tools-gap-leaves-the-software-supply-chain-exposed-why-you-need-to-upgrade-your-application-security

22 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

may create catastrophic damages for organizations and even lead
to legal and regulatory actions with implicit fiduciary responsibil-
ity for executives.

Emerging regulations like the E.U.’s Digital Operational Resilience
Act (DORA) and Cyber Resilience Act will require that your orga-
nization demonstrate that all software packages, containers, and
updates that it consumes are verified for the absence of malware,
patch-mandated vulnerabilities, and address other security threats.

In this chapter, we show you how to develop a third-party risk
management (TPRM) program to assess the security risks of
third-party software your organization consumes.

Sharing the Load: Managing Software
Supply Chain Risks

One way to avoid critical risk management activities from slip-
ping through the cracks is to clearly define the roles and respon-
sibilities within the organization to identify, detect, respond, and
recover from software supply chain security issues that may arise
throughout the software lifecycle. This includes the acquisition,
deployment, maintenance, and ongoing monitoring of software.
Table 3-1 shows a high-level RACI (responsible, accountable, con-
sulted, and informed) matrix, which demonstrates how your orga-
nization might distribute responsibilities across business functions
for managing the security risk presented by third-party software.

TABLE 3-1	 Software Use Lifecycle Stages
Acquisition Deployment Maintenance Monitoring

Procurement A

TPRM R C C I

Application
Security

C A I

IT Operations R A/R I

Threat Intel R

SOC A

Key: R = Responsible; A = Accountable; C = Consulted; I = Informed.

CHAPTER 3 Managing Third-Party Commercial Software Risk 23

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Figure 3-1 shows the key stages across the software development
and consumption lifecycle, outlining the diversity of stakeholders
and stages that require security risk monitoring and management
coverage.

We go into more detail about each of these lifecycle stages later
in this chapter in the “Achieving Software Assurance Throughout
the Lifecycle” section.

Aligning Software Supply Chain Security
Policies to Internal Standards

A successful TPRM program starts with clearly defining what
security requirements your organization expects third parties to
uphold.

Make sure the requirements are aligned with your organization’s
internal security standards, as well as any legislative and regula-
tory requirements that your organization and suppliers operate
within.

Given the recent emergence of software supply chain security risk,
not all organizations have formally defined these standards. In this
case, your organization should update existing documentation to
include requirements that allow the organization to continually
assess the risk presented by third-party software, throughout its

FIGURE 3-1: The key stages of development and lifecycle of software that
require security. Courtesy of ReversingLabs.

24 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

lifecycle. These policy requirements should be written at a high
level, to ensure multiple testing methodologies can be leveraged
to achieve the objective of overall software supply chain risk man-
agement. Additionally, it should be backed by industry standard
practices, to support rationale for implementation.

These control requirements, included within industry standard
framework NIST CSF 2.0, can be leveraged as supporting rationale
for proposed modification to existing corporate policy:

 » GV.SC-07: The risks posed by a supplier, their products and
services, and other third parties are identified, recorded,
prioritized, assessed, responded to, and monitored over the
course of the relationship (formerly ID.SC-02, ID.SC-04).

 » GV.SC-09: Supply chain security practices are integrated into
cybersecurity and enterprise risk management programs,
and their performance is monitored throughout the
technology product and service lifecycle.

Once established and clearly communicated, these requirements
must be continually applied to ensure that compliance by your
organization and its suppliers is tracked and reported. By ensur-
ing that only these requirements are tested, your organization can
avoid testing scope creep, which may detract from an efficient
and effective risk management strategy.

Understanding what software
to test first
Your organization most likely uses hundreds or even thousands
of software products. Given the size of this software supply chain,
it’s important to identify and analyze which of these products
provide critical business services that keep your organization
running, including any third-party software.

When determining how to segment your software estate based on
risk, consider a variety of risk elements, including

 » Criticality of software to business operations

 » Breadth of deployment of software

 » Location that software is deployed or integrated

 » Connectivity and privilege required for installation

CHAPTER 3 Managing Third-Party Commercial Software Risk 25

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Level of current and historical investment and maintenance
for software

Applying these considerations to business-critical software and
services enables your organization to quickly identify the IT assets
and services that have the most financial and operational impact
if breached via a software supply chain attack.

Shifting away from a “one size fits all”
mentality
Once you identify a target population of software and suppliers
for monitoring, evaluate your overall TPRM assessment meth-
odology to make sure it addresses the unique risk presented by
the specific supplier type. Comparing the security maturity of two
suppliers that are inherently different may negatively influence
procurement if the comparison is built off a correlation with no
significance.

One way to ensure that your TPRM assessments are properly cali-
brated to risk is to shift away from a reliance on questionnaires.
These primarily focus on business process-oriented controls such
as policy and procedure governance. More effective measures pro-
vide product- and service-specific assessments that address the
root of software supply chain security risk. We talk more about
this in the later section, “Going Beyond AppSec Controls to Eval-
uate Third-Party Risk.”

Evaluating the Security of
Third-Party Software

Targeted assessments of third-party software, including Com-
mercial Off the Shelf (COTS) products, should include inquiries
that are related to the unique functionalities of the software in
question. They include:

 » Obtaining a software bill of materials (SBOM). SBOMs list
the software “ingredients” of applications and services,
including open source and third-party software dependen-
cies, which enables streamlining incident response efforts in
the event of emergent software supply chain risks or threats.

26 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Scanning to identify malware and software tampering.
Any embedded malware within software poses business
risks or evidence of a malicious attack. Unexplained behav-
iors or modifications may indicate that underlying code has
been altered.

 » Identifying and tracking package behaviors across
release versions. This enables you to spot unexplained
changes in behavior that may indicate a compromise of the
supplier’s build system.

 » Verifying digital signature integrity. Tampering with digital
signatures for open source and proprietary packages may
indicate malicious tampering.

Achieving Software Assurance
Throughout the Lifecycle

The security risks posed by software suppliers are not stagnant.
As such, it’s important that your organization broaden the scope
of software assurance activities beyond checking it one time dur-
ing procurement. It is necessary to continually assess your soft-
ware throughout its lifecycle within your organization.

This concept of continuous supplier monitoring is captured in
many best practices guidelines, including NIST 800-161 Control
CA-2, the European Banking Association’s (EBA’s) Outsourc-
ing Guidelines, DORA, and the Biden Administration’s Executive
Order 14028.

A simple way of achieving continuous monitoring is by deploy-
ing security controls at each stage of the software consumption
lifecycle. This section defines the stages of the lifecycle, and the
stakeholder groups responsible for ensuring security assurance at
each stage. Figure 3-2 outlines each stage.

Stage 1: Acquisition
As your organization researches prospective software vendors,
you must consider the cybersecurity risk that the software will
expose your organization to. The acquisition stage represents the
pre-contract assessment activities that you can perform to iden-
tify cyber risks that might be introduced if you use the software.

CHAPTER 3 Managing Third-Party Commercial Software Risk 27

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Ask the vendor for access to the software binary and conduct
security testing of that binary.

To properly manage the cyber risks that go along with soft-
ware acquisition, consider involving the following groups and
functions:

 » Procurement: Responsible for defining, communicating,
and managing vendor research and qualification, and
ensuring the results from the software analysis are consid-
ered throughout the selection and onboarding processes.

 » Legal: Responsible for ensuring the ultimate agreement with the
vendor includes contractual terms that allow for the continuous
analysis of software (such as releases, patches, or hotfixes).

 » Third-party risk management: Responsible for obtaining
the software package for analysis as well as communicating
results, including key findings to the product owner, senior
management, and vendor.

 » Product/business owner: Responsible for approving or
rejecting software as well as any risks identified during
assessment that cannot be fixed by the vendor or otherwise
covered by compensating controls prior to product go-live.

Stage 2: Deployment
The deployment stage represents the post-contract operational
activities that are required to securely integrate a third-party
software solution.

FIGURE 3-2: Each stage of a software’s lifecycle needs to be secure. Courtesy
of ReversingLabs.

28 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

To properly manage the cyber risks that go along with soft-
ware deployment, consider involving the following groups and
functions:

 » Security architecture: Responsible for determining the
compensating technology and controls available to assist in
the mitigation of risks identified during analysis.

 » IT operations/IT service management (ITSM): Responsible
for the secure deployment of the software binary into the
production environment using any mitigation controls
identified during the analysis.

Stage 3: Maintenance
Commercial software solutions inevitably change over time as
bugs are fixed and new features are released. Of course, these
maintenance activities introduce risk.

New releases, bug fixes, and patches always have the potential
to introduce risk. This is why risk assessment isn’t a one-time
activity, but continuous.

To properly manage the cyber risks that go along with soft-
ware maintenance, consider involving the following groups and
functions:

 » Third-party risk management: Responsible for obtaining
new software release binaries for analysis by software
supply chain security tools, as well as communicating results,
including key findings to product owners, senior manage-
ment, and vendors.

 » Product/business owner: Responsible for approving or
rejecting new release versions as well as risks identified that
cannot be fixed by the vendor or otherwise covered by
compensating controls prior to deployment of a new release
version.

 » IT operations/ITSM: Responsible for updating software
inventory with approved release versions and revoking
access to legacy versions already deployed in production
as needed.

CHAPTER 3 Managing Third-Party Commercial Software Risk 29

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Stage 4: Monitoring
The monitoring stage provides proactive identification of cyber
risks, and vulnerabilities in the software supply chain, and sup-
ports efficient and effective incident response efforts. To properly
monitor the security of your software inventory, consider involv-
ing the following groups and functions:

 » Threat intelligence: Responsible for monitoring threat
intelligence feeds for newly emerging threats to the software
supply chain and notifying the SOC where potential impact lies.

 » Security operations center (SOC): Responsible for triaging,
investigating, and analyzing emerging threats. Responsible
for notifying IT operations/ITSM to revoke impacted software
where necessary.

Going Beyond AppSec Controls to
Evaluate Third-Party Risk

Dozens of tools and platforms in the Application Security Testing
(AST) marketplace promise to identify, mitigate, and manage risk
throughout the entire software development lifecycle. However,
hacks of SolarWinds, 3CX, MOVEIt, and others show that these
technologies are not up to the task of identifying and preventing
all software supply chain threats.

Static application security testing (SAST) technologies, for exam-
ple, enable software producers to analyze software source code
and identify embedded vulnerabilities. However, SAST requires
access to raw source code. Software publishers that rely on pre-
built, third-party software modules don’t have access to raw,
uncompiled source code, nor is it available to enterprise software
buyers.

Software composition analysis (SCA) technologies support the
identification of risks in open source software. However, SCA typ-
ically overlooks the sea of licensed, commercial software libraries
and other closed source components that may also present risks
to the security of an application.

30 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The result is that existing application security solutions limit your
ability to evaluate the security risk of the COTS software your
organization uses.

Compensating controls and
technology shortfalls
Aside from AST tooling, organizations rely on a number of alter-
native compensating controls and technology to mitigate the
security risk of COTS software. These approaches similarly leave
gaps in the protections they provide:

 » Vendor questionnaires: This traditional “pen and paper”
approach to managing vendor security risk provides limited
levels of assurance and relies on trusting that the vendor is
fully aware of its security risk and has been truthful and
complete in its self-attestation statements.

 » Anti-virus/anti-malware: Anti-virus and anti-malware
technologies were not designed to detect malicious code
lurking within large and complex software packages that
sport valid signatures and that otherwise appear normal. In
fact, anti-malware technologies often maintain file size
limitations that impact their ability to provide analysis
coverage for modern COTS applications.

 » Sandbox/virtual environments: Sandboxes are resource
intensive, and can be easily evaded using malicious tech-
niques. For example: Malware authors employ time-based
payload execution delay methods, where malicious code is
embedded and programmed to cause damage at a later time.

 » Security rating services: Although these services provide
valuable insights into the general security posture of the
vendor, they overlook the security risk posed by the actual
product (for example, COTS software package) that is being
consumed by the customer.

Complex binary analysis: A final
exam for software
How can your organization evaluate the security risk presented by
externally procured software? One way is through the greater use
of complex binary analysis as a kind of final exam to spot threats
before software is released to downstream consumers.

CHAPTER 3 Managing Third-Party Commercial Software Risk 31

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Complex binary analysis is the process of recursively unpacking
large and complex software binary files, extracting metadata
from embedded objects (such as executables, libraries, and icons),
and analyzing the contents to uncover internal threat indicators.
Figure 3-3 shows how this process typically works. In complex
binary analysis, the extracted files are not executed, which means
that a detailed analysis can be performed in an efficient and cost-
effective manner.

Complex binary analysis technology allows your organization
to deconstruct and analyze both open source and closed source,
commercial software packages. And complex binary analysis does
not have constraints like requiring access to the source code;
requiring the cooperation of the software vendor; or needing to
engage in manual testing. This enables both software producers
and end-user organizations to obtain the assurances they need
through an independent verification of trust.

Although an approach such as complex binary analysis is a
departure from traditional approaches to third-party software
risk management, it is essential to gain targeted risk insights at
the product level, where malicious actors are implanting threats.
Achieving these insights in an automated manner enables your
organization to securely onboard third-party software at the
speed your business operates.

FIGURE 3-3: The process of complex binary analysis. Courtesy of
ReversingLabs.

CHAPTER 4 Hunting for Threats in Your Software Supply Chain 33

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

 » Understanding how threat intelligence
fits into a threat-hunting strategy

 » Conducting threat hunting for known
and unknown threats

 » Securing the software development
pipeline with threat hunting

Hunting for Threats in
Your Software Supply
Chain

As the sophistication of cyber-attacks and malicious cyber
actors increased in the last decade, threat hunting emerged
as an indispensable tool for organizations. Threat hunting

describes the efforts to identify unknown and un-remediated
cyberthreats operating within your organization’s IT environ-
ment. In contrast to “incident response,” threat hunting is pro-
active, rather than reactive, and involves disciplined searches for
threats, including evidence of compromises on any systems,
networks, and infrastructure.

Historically, threat hunting has focused on identifying evidence
of traditional network compromises and threat actors, such as
the presence of malware inside email attachments, evidence of
communication to malicious command and control (C2) networks
from end user systems, and so on. Today, threat-hunting activi-
ties are shifting “left” to development pipelines, third-party
software, and software stored in the cloud, reflecting the kinds of
systems targeted by threat actors.

Threat hunting today is a critical capability to thwart software
supply chain attacks. In this chapter, we examine the steps you

34 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

need to take to develop a robust threat-hunting operation that
can bolster the security of your software supply chain.

Using Threat Intelligence
Just as cyber threat-hunting capabilities are key to securing
modern software supply chains, cyber threat intelligence is a key
component of effective software supply chain threat-hunting
operations.

What is threat intelligence?
The term threat intelligence refers to the aggregation and applica-
tion of comprehensive threat data. Threat intelligence falls into
two categories:

 » Atomic indicators: These are discrete pieces of threat
intelligence, such as cryptographic hash values associated
with known malware. Atomic indicators are useful for
intelligence-based hunting.

 » Tactics, Techniques, and Procedures (TTPs): These are the
more holistic aspects of a malicious actor’s behavior. A tactic
is a high-level description of attacker behavior; a technique is
a detailed description of behavior in the context of a tactic; a
procedure is a low level, detailed description in the context of
a technique.

Both types of threat intelligence are useful in hypothesis hunting,
the process of working backwards from indicators of attack (IoAs)
or indicators of compromise (IoCs) to identify specific threat
actors or groups who may be operating within a compromised IT
environment.

Use frameworks such as MITRE’s ATT&CK to map TTPs and other
forms of threat intelligence. This framework connects threats
with known threat actors and recommends mitigations.

Gathering intelligence
As with traditional IT security assessments, a good way to start
accessing your software supply chain security is by looking at
your organization’s attack surface (the areas that are vulnerable
to an attack). This includes an understanding of your critical IT

CHAPTER 4 Hunting for Threats in Your Software Supply Chain 35

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

assets and possible avenues along which cyber-attacks on your
software supply chain may travel. This process starts with iden-
tifying your high-risk development and software supply chain
assets: the places where highly sensitive data is stored; that per-
form critical functions; that are exposed to the Internet; and sys-
tems that are critical to your business operations.

When finding your high-risk assets, don’t forget about anything
that touches them. If one of these systems is vulnerable, your
high-risk asset is vulnerable, too, and a likely target for threat
actors.

Identifying high-risk assets
Securing your software pipeline from end to end is essential to
prevent compromises. Consider these targets of software supply
chain attackers:

 » Privileged employee workstations: Many hacks begin with
the compromise of a single developer or employee worksta-
tion. Harden endpoints used by staff, and monitor both
privileged accounts and workstations for suspicious activity.

 » Open source and third-party software packages: Scanning
open source packages and closed source, third-party compo-
nents for malicious or suspicious code, dependencies, and
behaviors is key to preventing supply chain attacks.

 » Integrated development environments (IDEs): Malicious
actors aren’t just focused on seeding open source package
managers with malicious code. IDEs are also fair game, with
campaigns designed to trick developers into installing
malicious extensions into their IDE.

 » Continuous integration/continuous delivery (CI/CD)
software: Malicious actors use their access to CI/CD
environments to exfiltrate sensitive data such as credentials
and access tokens, or otherwise tamper with the contents of
targeted software packages.

 » Build servers: Malicious actors that are able to compromise
build can inject malicious code and functions into signed
software artifacts.

 » Final builds: The goal of software supply chain attackers is
to weaponize the software that will be installed by end-user
organizations. Examine all final, signed builds for unexplained
behaviors, features, and characteristics before releasing them.

36 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Sources of threat intelligence
Now that you know where to look, the next question is “what
should we look for?” Evidence of suspicious or malicious activity
related to key development assets can take many forms. Here are
some examples to consider:

 » Exploitable software vulnerabilities: Software flaws are a
frequently used avenue of attack. Scan code to identify
known and exploitable vulnerabilities.

 » File rot: Old and outdated files or code, over time, accumu-
late software vulnerabilities or use outdated security
methods that attackers break easily.

 » Malicious or suspicious code: Malicious or suspicious
(obfuscated) code, backdoors, or other unexplained function-
ality are common to many software supply chain attacks.

 » Behavioral anomalies: Unexplained and suspicious
behaviors in compiled binaries are a sign of possible
unauthorized tampering with sanctioned code.

 » Third-party dependencies: Attacks often leverage third-
party dependencies to sneak malicious or vulnerable code
into otherwise hardened applications.

 » Open source (OSINT) and dark web intelligence: Malicious
software supply chain campaigns can often be stopped in
the planning stages via careful monitoring of both open
source intelligence and the cyber underground where
evidence of planning or active campaigns against targeted
firms first turn up.

Proactively Hunting Threats
Whether focused on traditional IT environments or development
pipelines, threat hunting involves identifying both known and
unknown threats. For example, the revelation of a new zero-day
vulnerability in critical software that is being actively exploited,
such as the infamous EternalBlue flaw in Microsoft’s implemen-
tation of Server Message Bus, might prompt a threat-hunting
expedition within sensitive environments to look for evidence of
malicious actors leveraging that flaw.

CHAPTER 4 Hunting for Threats in Your Software Supply Chain 37

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Don’t wait for a specific threat or risk. Threat hunting can take
place independently regardless of a known threat or risk. Be pro-
active and look for evidence of compromises involving known
threats or in relation to sensitive IT assets.

Most established threat-hunting guides are focused on defending
against an older generation of common threats to IT networks
and assets. Software development, build and release infrastruc-
ture, and processes are not typically discussed in those guides. But
the increasing frequency and scope of malicious software supply
chain campaigns make it clear that your development environ-
ment and pipeline are part of the cyber terrain, where hackers are
lingering, waiting for a way into your organization.

How does your organization go about threat hunting within your
software supply chain? Here are some suggestions.

Looking for evidence of
malicious activity
The first stop for any threat-hunting team — whether focused
on traditional network compromises or software supply chain
hacks — is to look for evidence of malicious activity within sensi-
tive and protected environments. These include looking for and
finding evidence of:

 » Reconnaissance: Attacks on development environments
may start with efforts to identify and target privileged
developer and administrator accounts within target organi-
zations or trusted suppliers to those organizations. Work
with your development team and trusted third parties to
find evidence of malicious actors’ reconnaissance or activity,
including unsolicited email and social media messages, the
transmission of suspicious files or web links, and so on.

 » Initial access: Successful software supply chain compro-
mises begin with attackers gaining a foothold on sensitive or
privileged IT assets that have direct or remote access to
protected assets and networks. Scanning for unusual
patterns of user access, unknown accounts, unexplained
network activity (for example, lateral movement), or the
download and execution of unknown or unexplained files
can turn up evidence that an attacker may have gained
access to your development environment.

38 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Command and control (C&C) infrastructure and exfiltra-
tion: Software supply chain attackers almost certainly need
to communicate outside your environment at some point
during their compromise. That could include communica-
tions to and from malicious command and control infra-
structure, downloading second- or third-stage malware, or
the exfiltration of sensitive information. Scanning logs and
monitoring for unexplained encrypted or unencrypted
communications into or out of your environment is one way
to spot an intrusion.

Using SBOMs to understand
software composition
Before you can identify threats in your software supply chain, it is
important to understand the composition of the software applica-
tions and services that your organization is trying to defend. Gen-
erating software bills of materials (SBOMs) and requiring them
from your software suppliers are critical first steps in construct-
ing a software supply chain threat-hunting plan. SBOMs come in
many different formats, but most include standard elements such
as the software component name, the publisher’s name, the com-
ponent version, filenames, software licenses, and any software
dependencies.

By providing a list of third-party and open source software,
 statically linked packages, and internally developed software,
SBOMs provide a roadmap for threat-hunting teams to assess
software supply chain risks and identify possible avenues of
 compromise. With detailed SBOMs, threat-hunting teams can
begin the work of identifying and assessing open source and
 commercial, third-party code dependencies and identify avenues
of attack and exploitation that a malicious actor might use to
compromise your organization’s software supply chain.

Identifying evidence of compromise
With a solid understanding of your development environment,
and the makeup of the applications and services your threat-
hunting team is defending, you can begin the process of looking
for evidence of emerging, ongoing, or past compromises of your
software supply chain. For example, your software supply chain
threat-hunt team may:

CHAPTER 4 Hunting for Threats in Your Software Supply Chain 39

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Leverage threat intelligence. High-quality threat intelli-
gence feeds can help point your threat-hunting team in the
direction of accounts or IT assets that are on the radar of
malicious actors and that may be targeted in attacks.

 » Look for evidence of exploitation of known software
vulnerabilities. Identify exploitable software holes in your
current application code or development infrastructure and,
if found, look for evidence of active or past attempts to
exploit those holes. A positive finding could be evidence of a
security breach.

 » Scan software binaries for behavioral anomalies.
Complex binary analysis (which we discuss in Chapter 3) can
identify behavioral anomalies (you can compare the anomaly
to the known version), which may indicate the presence of
backdoors or other unexplained functionality.

 » Assess open source and third-party dependencies. For
open source code, verifying the integrity of open source
packages and scanning for the presence of obfuscated code,
call outs to unknown IP addresses, expired certificates, or
other suspicious features can identify possible risks. For
closed source, third-party code, requesting detailed SBOMs
from suppliers, verifying code signatures, and conducting
complex binary analysis on compiled and signed software
artifacts can help identify risks.

Hunting for Developer Threats
Part of securing your development pipeline is making sure your
engineers are highly skilled and trained properly. As we noted,
a mature threat-hunting capability is critical to maintaining a
secure software development pipeline and staving off successful
software supply chain attacks. Such a capability requires your
organization to remain vigilant to both sophisticated and
 unsophisticated, developer-centric threats. These include being
attentive to common “ease of development” features like devel-
opers’ use of temporary backdoors that may find their way into
production code. It also demands attention to more subtle manip-
ulations by a malicious insider that has access to raw, uncompiled
code or other development infrastructure.

40 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

To address such threats, you should:

 » Prioritize reviews of critical code. Pay particular attention
to code that employs elevated privileges, accesses sensitive
resources, or implements cryptographic functions.

 » Conduct automated static and dynamic testing. Test
newly checked-in code for known vulnerabilities.

 » Map newly created code. Identify new code and look for
the inclusion features and behavior that may indicate
malicious activity.

 » Implement authenticated code check-ins. Guard against
compromises of development systems by requiring develop-
ers to authenticate prior to checking in code.

 » Implement strong access control. Secure access to
development-related infrastructure with strong and
multifactor authentication as well as user policies that
restrict access to sensitive data and features.

 » Implement continuous monitoring of developer systems.
You also need to monitor for suspicious activity that may
indicate the presence of an insider threat, or the compro-
mise of a privileged user account.

 » Assess the final build. Before releasing software to
customers, assess your final build artifact for the presence of
embedded threats such as malware and suspicious changes
in software behaviors. These can indicate that your software
supply chain has been compromised.

CHAPTER 5 Ten Tips for a Successful Software Supply Chain Security Program 41

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5
Ten Tips for a Successful
Software Supply Chain
Security Program

Building a robust software supply chain security program
requires time to plan and realize, as well as getting buy-in
from stakeholders up and down the organizational chart. As

daunting as that may sound, “the journey of a thousand miles
starts with a single step,” as the saying goes. With that in mind,
here are ten tips for building a successful software supply chain
security program at your organization.

Broaden Your AppSec Program
The application security testing status quo is focused narrowly on
vulnerability identification and management as well as code qual-
ity. But that leaves software producers short of the goal line in
the larger context of software supply chain security. To stand up
a successful software supply chain security program, broaden the
focus of your application security testing to incorporate threats
such as code tampering or the introduction of malware into
first-party, open source, or commercial third-party code.

IN THIS CHAPTER

 » Building a successful software supply
chain security program

 » Protecting software through its lifecycle

42 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Secure and Protect Development
Infrastructure

Prioritize the security of your development infrastructure, from
developer workstations to build and release servers. Tightly man-
aging access to development assets through robust access con-
trol and least privilege policies can keep malicious actors from
getting a foothold on development systems. Close monitoring
of the security configurations and network activity associated
with developer systems, continuous integration and continuous
delivery/deployment (CI/CD) systems, and build servers is key.
Endpoint detection and response (EDR) software, threat moni-
toring, and security information and event management (SIEM)
technologies can help by preventing local compromises from
spreading within organizations and affecting development
environments.

Beware of File Rot
File rot is the presence of old and outdated files or code in applica-
tions. As time passes, and absent updates, code tends to accumu-
late vulnerabilities and inefficiencies, making file rot an implicit
risk to application security, not to mention application availability
and performance.

While old files are not necessarily evidence of file insecurity, the
file rot phenomenon suggests that old and outdated files should
be a focus for attention and close monitoring by your application
security and development teams.

Give Your Software Package a Final Exam
More and more production and customer environments are being
hacked by malicious actors that place back doors and other code in
software updates from trusted suppliers. This makes it clear that
traditional forms of third-party risk assessment (such as volun-
tary vendor compliance surveys and questionnaires) can’t be the
only factors in deciding whether software is safe. One supplement

CHAPTER 5 Ten Tips for a Successful Software Supply Chain Security Program 43

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

to vendor questionnaires is to use complex binary scanning and
analysis that verifies the integrity of a compiled package.

Enhance Your Risk Analysis
The exponential growth of threats in open source repositories in
recent years highlights the risk of development organizations’
dependence on open source and third-party, commercial soft-
ware. To address this risk, you need to apply a consistent level of
scrutiny to software provided by trusted internal teams, third-
party contractors, and commercial software suppliers.

You must do more than simply analyze open source software com-
ponents or generate a software bill of materials (SBOM). Employ
comprehensive software supply chain risk analysis, to ensure that
remediation efforts are effective.

Use Threat Intelligence
Incorporating threat intelligence into your software supply chain
program enhances your ability to monitor development activ-
ity for indicators like the presence or execution of a known-bad
binary or communications to and from a malicious domain or
other known command and control (C2) infrastructure.

Emphasize Secure Development
Practices

The security of software supply chains rests on the foundation
of secure code. The best way to raise the quality and security of
application code is by emphasizing secure design principles at the
earliest stages of product conception and creation. That means
employing threat modeling and attack surface analysis during
product design and planning. Development practices should also
reduce risks, for example through the use of memory safe lan-
guages; thread safe operations; attention to least privilege con-
cepts and user role separation; as well as the use of encryption for
data at rest and in transit.

44 Software Supply Chain Security For Dummies, ReversingLabs Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Pay Attention to Open Source Risks
Between 70 and 90 percent of the code in modern applications is
open source, by one estimate. However, the use of open source
software comes with risks: providing malicious actors with an
avenue into development environments. Securing your soft-
ware supply chain means developing a detailed understanding of
your use of- and dependence on open source modules. Tracking
open source licenses and use within your organization as well as
identifying and tracking vulnerable and/or compromised open
source components makes it easier to stay on top of these risks.

Invest in Proactive Threat Hunting
Government guidelines require you to expand the scope of your
defensive measures beyond vulnerability discovery and patching.
Invest in tools that can identify malicious components hiding in
open source, commercial, and third-party software packages.

You can identify those risks with complex binary analysis and file
reputation tools. Also, apply open source YARA rules internally to
detect malicious software components such as malware down-
loaders, viruses, trojans, exploits, and ransomware within your IT
or development environments.

Monitor and Track Development Secrets
The increasing number of development secrets poses a risk to
your development organization, especially when coupled with
complex deployment pipelines and ephemeral systems such
as virtual containers. The ability to monitor your source code
and development pipeline for the presence of developer secrets
such as coded credentials and API keys is critical to preventing
compromises of your development organization.

http://reversinglabs.com/spectra-assure

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Icons in This Book
	Beyond the Book

	Chapter 1 Exploring the Landscape of Software Supply Chain Risks and Threats
	Understanding Why Software Supply Chain Attacks Are a Growing Threat
	Open source code
	Software build systems

	Increasing Software Supply Chain Risks from DevOps
	Filling in Blind Spots with Comprehensive Security

	Chapter 2 Software Supply Chain Security for Modern Development Programs
	Securing Source Code
	Securing Third-Party and Open Source Components
	Securing Your Continuous Integration/Continuous Delivery System
	Securing the Development, Build, and Release Processes
	Development
	Build
	Release

	Standardizing with Software Supply Chain Security Frameworks
	Supply Chain Levels for Software Artifacts (SLSA)
	In-toto

	Developing Reproducible Processes

	Chapter 3 Managing Third-Party Commercial Software Risk
	Sharing the Load: Managing Software Supply Chain Risks
	Aligning Software Supply Chain Security Policies to Internal Standards
	Understanding what software to test first
	Shifting away from a “one size fits all” mentality

	Evaluating the Security of Third-Party Software
	Achieving Software Assurance Throughout the Lifecycle
	Stage 1: Acquisition
	Stage 2: Deployment
	Stage 3: Maintenance
	Stage 4: Monitoring

	Going Beyond AppSec Controls to Evaluate Third-Party Risk
	Compensating controls and technology shortfalls
	Complex binary analysis: A final exam for software

	Chapter 4 Hunting for Threats in Your Software Supply Chain
	Using Threat Intelligence
	What is threat intelligence?
	Gathering intelligence
	Identifying high-risk assets
	Sources of threat intelligence

	Proactively Hunting Threats
	Looking for evidence of malicious activity
	Using SBOMs to understand software composition
	Identifying evidence of compromise

	Hunting for Developer Threats

	Chapter 5 Ten Tips for a Successful Software Supply Chain Security Program
	Broaden Your AppSec Program
	Secure and Protect Development Infrastructure
	Beware of File Rot
	Give Your Software Package a Final Exam
	Enhance Your Risk Analysis
	Use Threat Intelligence
	Emphasize Secure Development Practices
	Pay Attention to Open Source Risks
	Invest in Proactive Threat Hunting
	Monitor and Track Development Secrets

	EULA

